Publications by Year: 2016

Zhuravel, R. ; Amit, E. ; Elbaz, S. ; Rotem, D. ; Chen, Y. ; Friedler, A. ; Yitzchaik, S. ; Porath, D. Atomic force microscopy characterization of kinase-mediated phosphorylation of a peptide monolayer. Nature - Scientific Reports 2016, 6. Publisher's VersionAbstract

We describe the detailed microscopic changes in a peptide monolayer following kinase-mediated phosphorylation. A reversible electrochemical transformation was observed using square wave voltammetry (SWV) in the reversible cycle of peptide phosphorylation by ERK2 followed by dephosphorylation by alkaline phosphatase. A newly developed method for analyzing local roughness, measured by atomic force microscope (AFM), showed a bimodal distribution. This may indicate either a hole-formation mechanism and/or regions on the surface in which the peptide changed its conformation upon phosphorylation, resulting in increased roughness and current. Our results provide the mechanistic basis for developing biosensors for detecting kinase-mediated phosphorylation in disease.

Gizzie, N. ; Mayne, R. ; Adamatzky, A. ; Ikbal, M. ; Yitzchaik, S. Living Wires-Effects of size and Coating of Gold Nanoparticles in Altering the Electrical Properties of Physarum ploycephalum and Lettuce Seedlings. Nano LIFE 2016, 06. ArticleAbstract

The manipulation of biological substrates is becoming more popular route toward generating novel computing devices. Physarum polycephalum is used as a model organism in biocomputing because it can create “wires” for use in hybrid circuits; programmable growth by manipulation through external stimuli and the ability withstanding a current and its tolerance to hybridization with a variety of nano/microparticles. Lettuce seedlings have also had previous interest invested in them for generating plant wires, although currently there is little information as to their suitability for such applications. In this study both P. polycephalum and Lettuce seedlings were hybridized with gold nanoparticles — functionalized and unfunctionalized — to explore their uptake, toxicological effects and, crucially, any alterations in electrical properties they bestow upon the organisms. Using various microscopy techniques it was shown that P. polycephalum and lettuce seedlings are able to internalize nanoparticles and assemble them in vivo, however some toxicological effects were observed. The electrical resistance of both lettuce seedlings and P. polycephalum was found to decrease, the most significant reduction being with lettuce seedlings whose resistance reduced from 3MΩΩs to 0.5MΩΩs. We conclude that gold is a suitable nanomaterial for biohybridization specifically in creating conductive pathways for more efficient biological wires in self-growing hybrid circuitry.